DIFFERENTIAL DIAGNOSTIC OF COMA

Department of internal diseases

*What defines Coma?

"A state of unresponsiveness in which the patient lies with his eyes closed and cannot be aroused to respond appropriately to stimuli even with vigorous stimulation. The patient may grimace in response to painful stimuli and limbs may demonstrate stereotyped withdrawal responses, but the patient does not make localized responses or discrete defensive movements."

*In simple terms...

Defined as comatose if they have no ability to take in information from their environment and cannot respond to external stimuli in a meaningful way

*Objectives

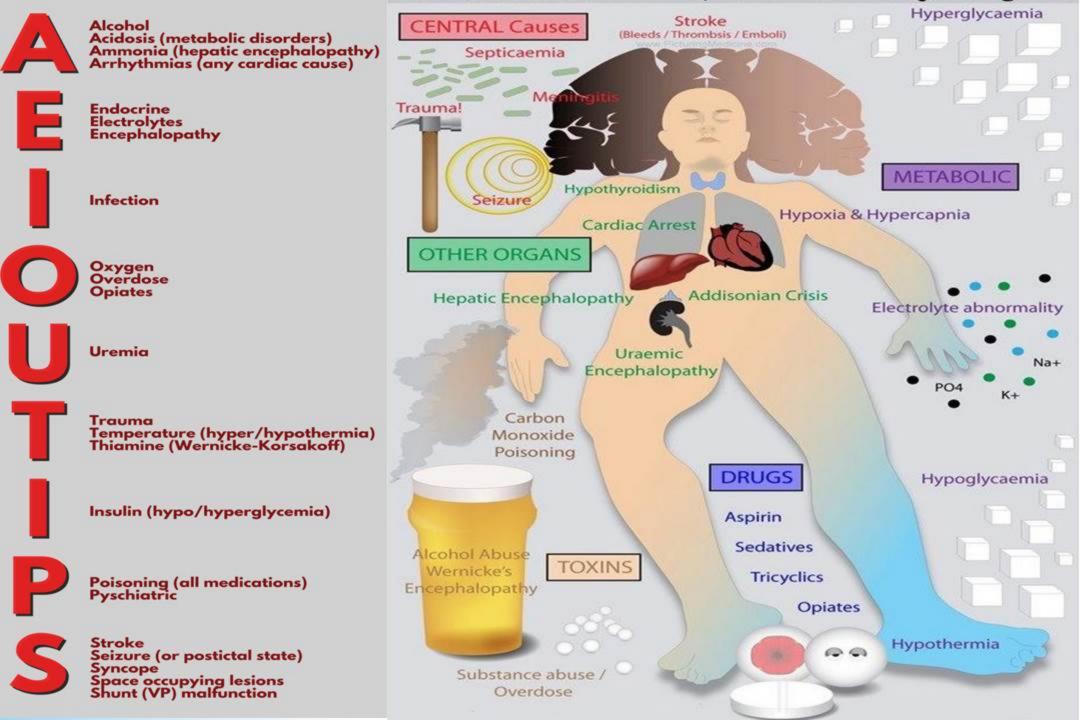
- *Primary Objective: The physician should be able to stabilize, evaluate, and treat the comatose patient in the emergent setting.
- *The physician should understand this involves an organized, sequential, prioritized approach.

*Primary Objectives

- *Airway
- *Breathing
- *Circulation
- *Treatment of rapidly progressive, dangerous metabolic causes of coma (hypoglycemia)
- *Evaluation as to whether there is significant increased intracranial pressure (ICP) or mass lesions.
- *Treatment of ICP to temporize until surgical intervention is possible.

*Secondary Objectives

- *The physician should understand and recognize:
 - *Coma
 - *Herniation syndromes
 - *Signs of supratentorial mass lesions
 - *Signs of subtentorial mass lesions
- *The physician should be able to develop the differential diagnosis of metabolic coma.


* Causes of Coma

Structural causes

- Trauma (ICP, diffuse axonal injury, concussion)
- Infection (Meningitis, encephalitis, abscess)
- ADEM, demyelination
- 4. Hydrocephalus
- 5. Nutritional (Wernicke's)
- Seizure (Non-convulsive status)
- Vasculitis

Toxic/ Metabolic

- Hypo or hyperglycemia
- Renal failure
- Electrolyte abnormalities
- 4. Hepatic failure
- Hypoxia
- 6. Hypercarbia
- Porphyria
- Acid -base disorders
- Drugs & Toxins

*Neurophysiology

- *Consciousness requires:
 - *An intact pontine reticular activating system
 - *An intact cerebral hemisphere, or at least part of a hemisphere
- *Coma requires dysfunction of either the:
 - *Pontine reticular activating system, or
 - *Bihemispheric cerebral dysfunction

* Differential diagnosis

Locked in state

Persistent vegetative state

Pseudocoma

Akinetic mutism

Catatonic stupor

Abulia

State	Stimulus needed for arousal
Drowsiness	Verbal and light touch
Obtundation	Deep touch
Stupor	Vigorous, painful, or noxious stimulation

Partial

Partial

Partial

+

Coma

state

Delirium

Locked in

Vegetative state

Min consciousness

Akinetic mutism

+

+

+

+

+

" Disorders of consciousness							
	Arousal	Awareness	Sleep-wake	Motor	Resp		
Brain death	-	-	-	-	-		

+

+

+

+

+

Abn, variable

+

+

+

+

Normal

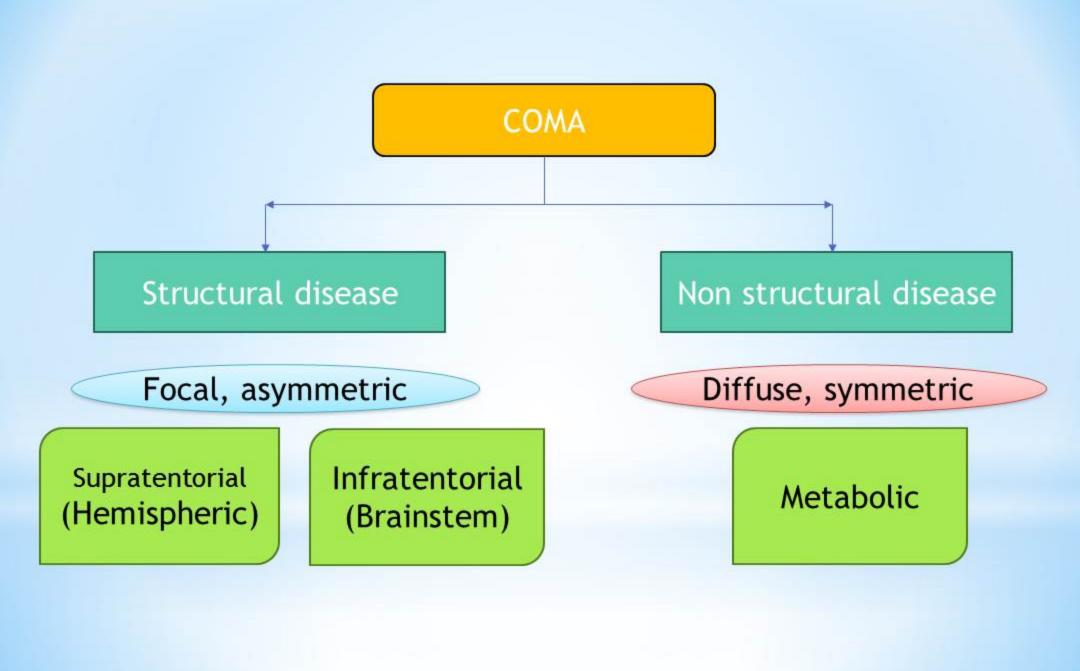
Non

Non

purposeful

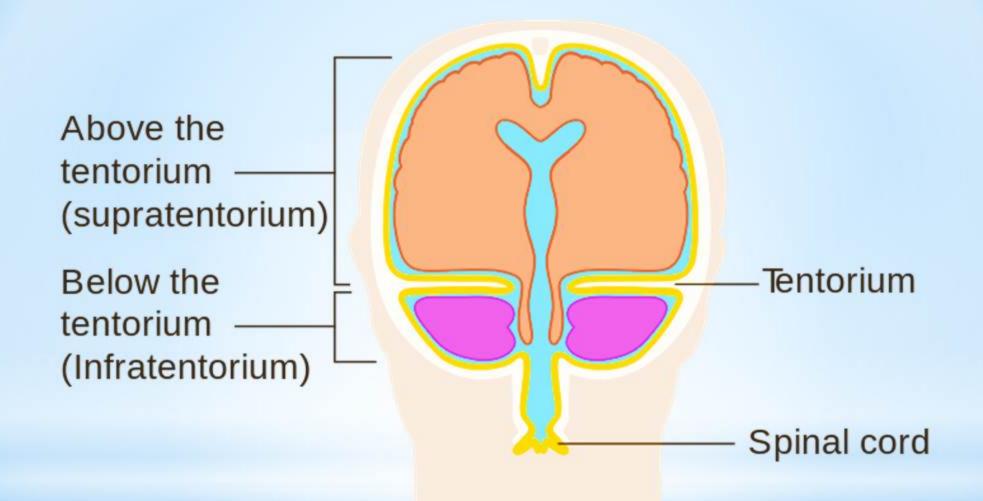
purposeful

purposeful


Intermit

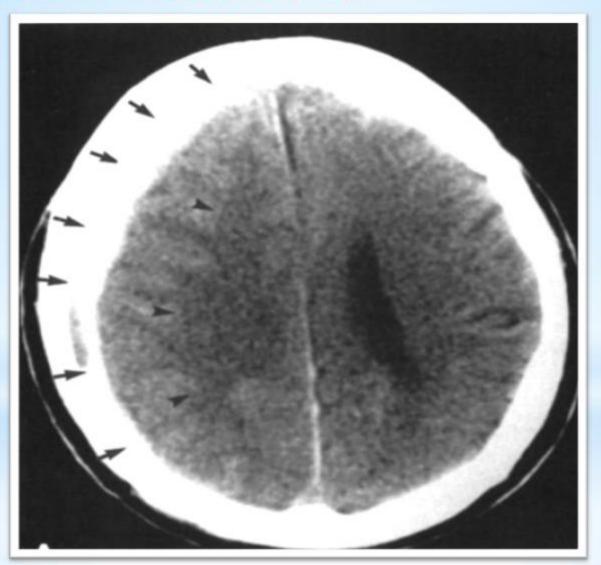
Paucity

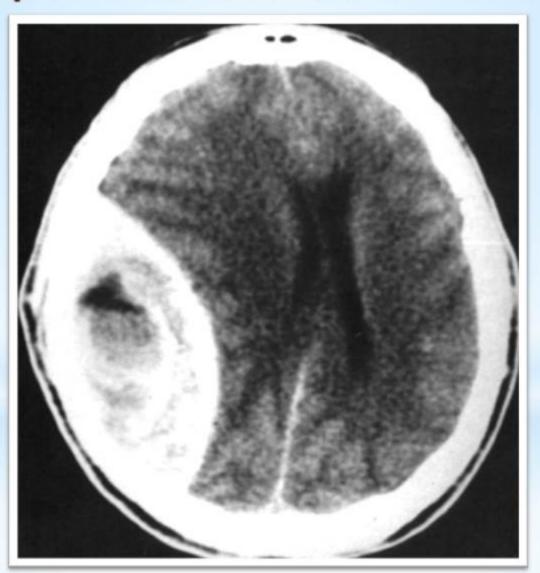
Normal


Quadriplegia,

anarthria

* Classification of Coma


- *Supratentorial lesions cause coma by either widespread bilateral disease, increased intracranial pressure, or herniation.
- *Infratentorial lesions involve the RAS, usually with associated brainstem signs
- *Metabolic coma causes diffuse hemispheric involvement and depression of RAS, usually without focal findings
- *Psychogenic

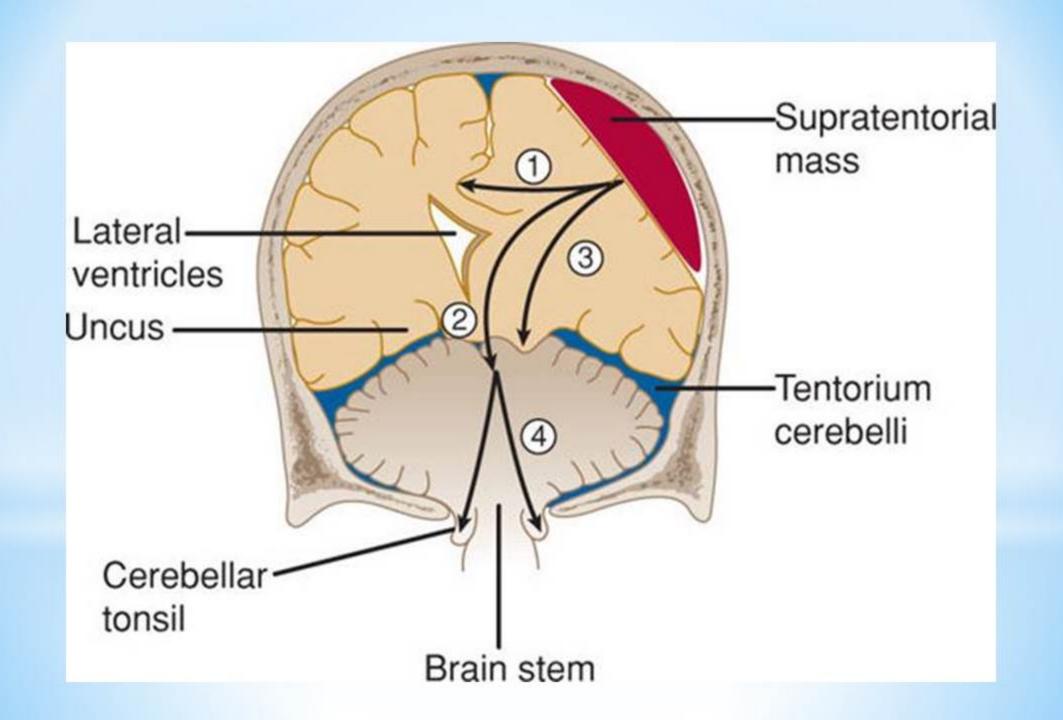

*Supratentorial Mass Lesions

- *Hematoma
- *Neoplasm
- *Abscess
- *Contusion
- *Vascular Accidents
- *Diffuse Axonal Damage

Supratentorial Mass Lesions Subdural Hematoma

Supratentorial Mass Lesions Acute epidural hematoma and midline shift

Severe head trauma with basilar skull fracture, right temporal hematoma, cerebral edema, hydrocephalus, and pneumocephalus



Supratentorial Mass Lesions Cerebral Abscess

Supratentorial Mass Lesions *Pathophysiology

- *Altered consciousness is based on
 - *Increased intracranial pressure
 - *Herniation
 - *Diffuse bilateral lesions

Herniation Syndromes

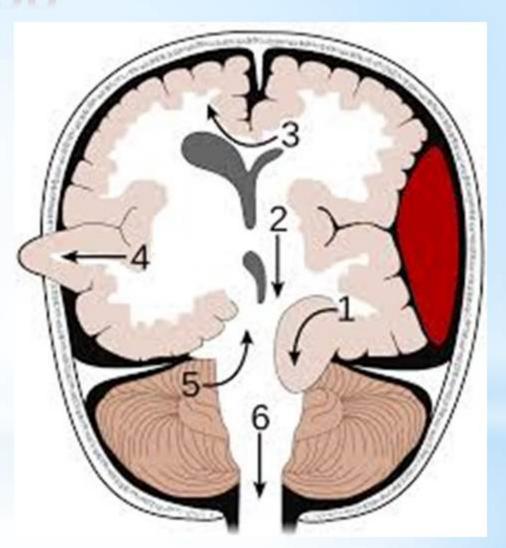
Central herniation

Rostral caudal progression of respiratory, motor, and pupillary findings
May not have other focal findings

Uncal herniation

Rostral caudal progression

CN III dysfunction and contralateral motor findings

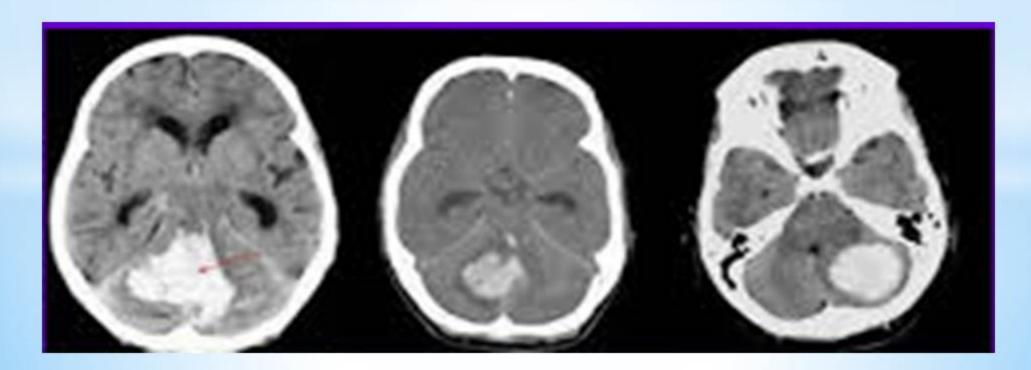

*Brain Herniation

Supratentorial herniation

- 1. Uncal (transtentorial)
- 2. Central
- 3. Cingulate (subfalcine)
- 4. Transcalvarial

Infratentorial herniation

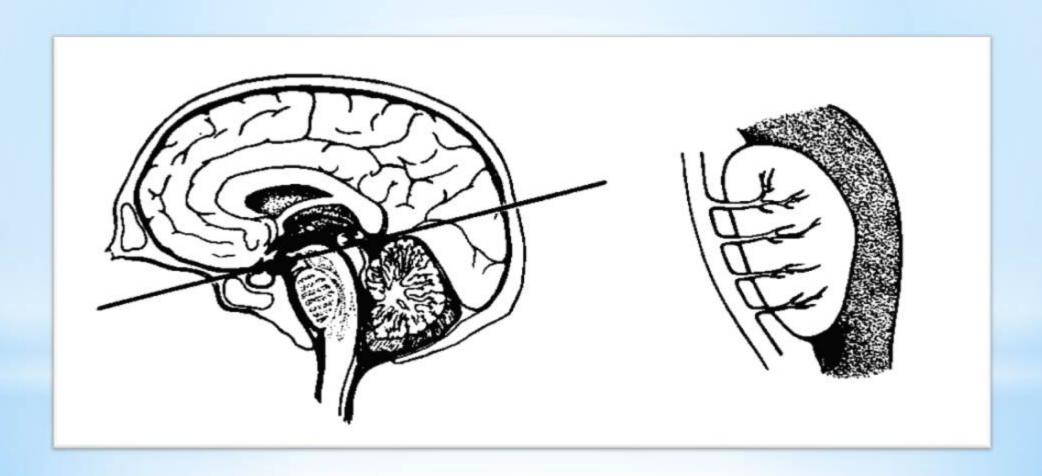
- Upward (upward cerebellar or <u>upward</u> transtentorial)
- Tonsillar (downward cerebellar)


*Herniation syndromes

Uncal herniation	i/I dilated pupil Contralateral hemiparesis Variable impaired consciousness Decerebrate posturing
Central descending transtentorial	Decorticate posturing Midsize fixed pupils Early coma Cheyne Stokes
Central ascending transtentorial	Nausea, stupor
Sub falcine/ Cingulate	Small reactive pupil Headache C/I leg paralysis
Tonsillar	HTN-bradycardia-bradypnoae b/I arm dysesthesia Coma Response arrest

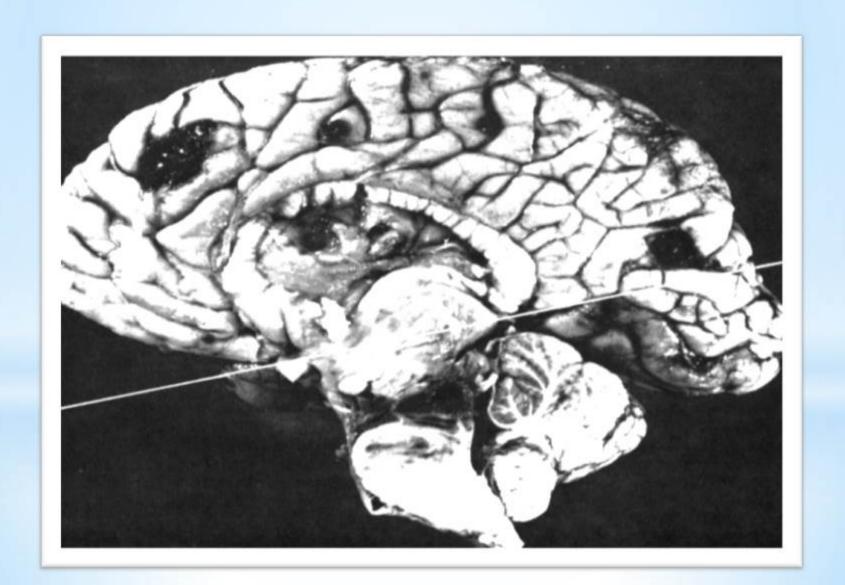
*No features of coning?

*Suspect primary brain stem lesion:


- 1. Brain stem infarction or hemorrage
- 2. Cerebellar hemorrage
- 3. Cerebellar infarct with compression

Herniation syndromes

Normal Anatomy


Transtentorial Herniation

Normal Brain

Transtentorial herniation and brain infarction

Supratentorial Mass Lesions Differential Characteristics

Initiating signs usually of focal cerebral dysfunction Signs of dysfunction progress rostral to caudal Neurologic signs at any given time point to one anatomic area - diencephalon, midbrain, brainstem Motor signs are often asymmetrical

Plum and Posner, 1982

*Infratentorial Lesions

- *Cause coma by affecting reticular activating system in pons
- *Brainstem nuclei and tracts usually involved with resultant focal brainstem findings

* Infratentorial Lesions Causes of Coma

- *Neoplasm
- *Vascular accidents
- *Trauma
- *Cerebellar hemorrhage
- *Demyelinating disease
- *Central pontine myelinolysis (rapid correction of hyponatremia)

* Infratentorial Lesions Differential Characteristics

- *History of preceding brainstem dysfunction or sudden onset of coma
- *Localizing brainstem signs precede or accompany onset of coma and always include oculovestibular abnormality
- *Cranial nerve palsies usually present
- *"Bizarre" respiratory patterns common, usually present at onset of coma

Plum and Posner, 1982

* Metabolic Coma Etiology

- *Respiratory
 - *Hypoxia
 - *Hypercarbia
- *Electrolyte
 - *Hypoglycemia
 - *Hyponatremia
 - *Hypercalcemia

- *Hepatic encephalopathy
- *Severe renal failure
- *Infectious
 - *Meningitis
 - *Encephalitis
- *Toxins, drugs

* Metabolic Coma Differentiating Features

- *Confusion and stupor commonly precede motor signs
- *Motor sings are usually symmetrical
- *Pupillary reactions are usually preserved
- *Asterixis, myoclonus, tremor, and seizures are common
- *Acid-base imbalance with hyper- or hypoventilation is frequent

Plum and Posner, 1982

*PART II: Work with patient

*How to logically approach?

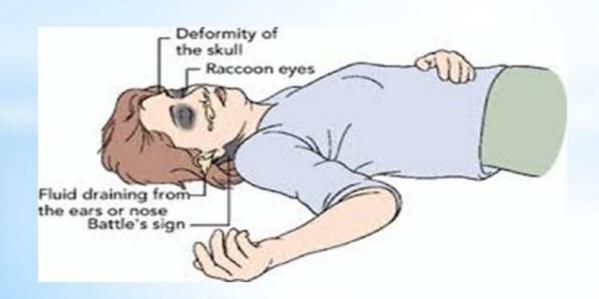
STEP I: Rule out coma mimics

STEP II: Whether bispheric or hemispheric problem

STEP III: If its bispheric, is it primary or secondary (coning?)

STEP IV: If its hemispheric, is it structural or metabolic

STEP V: Investigation, Management & Prognosis


*History of patient condition

- *Extremely important!!!
- *Often difficult and sometimes impossible to obtain!

•Rapidity	Acute vs subacute
•Symptoms prior to coma	Trauma, head ache, fever, seizure, chest pain, breathlessness etc
•History of neurological deficits	
•Past history	DM, HTN, alcoholism, seizure disorder, drug abuse, depression or suicidal attempts etc.
Drug history	

*General Physical Examination

- *Appearance
- *Evidence of trauma
- *Evidence of hepatic or renal dysfunction.
- *Incontinence & tongue injury → Seizure

* General physical examination

Needle tracks	Drug overdose
Cyanosis	Hypoxia, cardiac disease, cyanide
Cherry red	Carbon monoxide intoxication
Icterus	Hepatic encephalopathy, hemolysis
Pallor	Anemia, hemorrhage, shock, vasomotor syncope
Petechiae	Disseminated intravascular coagulation, meningococcemia, drugs, fat embolism
Purpuric rash	Meningococcemia, Rocky Mountain spotted fever (RMSF) and others

General physical examination

Maculopapular rash	Toxic shock syndrome, SBE, SLE, and others
Bullous lesions	Drug overdose, especially barbiturates
Flushing, erythema	Polycythemia, fever, alcohol intoxication
Bruises	Trauma, coagulopathy
Sweating	Fever, hypoglycemia

*Blood pressure

Hypertension

- Stroke
- Intracranial hemorrhage
- Increased ICP
- Hypertensive encephalopathy
- Renal disease

Hypotension

- Hypovolemia
- Myocardial Infarction
- Intoxication (especially ethanol and barbiturates)
- Wernicke's encephalopathy
- Sepsis

*Respiration examination

Breath odour??

- 1.Acetone (DKA)
- 2. Ethanol (intoxication)
- 3. Fetor hepaticus
- 4. Uriniferous (uremia)
- 5. Garlic odor (arsenic poisoning)
- 6. Household gas (carbon monoxide)

*Respiration examination

Hyperventilation

- * Hypoxia
- * Hypercapnia
- * Acidosis
- * Fever
- * Liver disease
- * Sepsis
- * Pulmonary emboli
- * Toxins
- * Drugs producing metabolic acidosis
- * Central neurogenic hyperventilation
- * Salicylism

Hypoventilation

- * Overdose
- * Myxedema

*Temperature examination

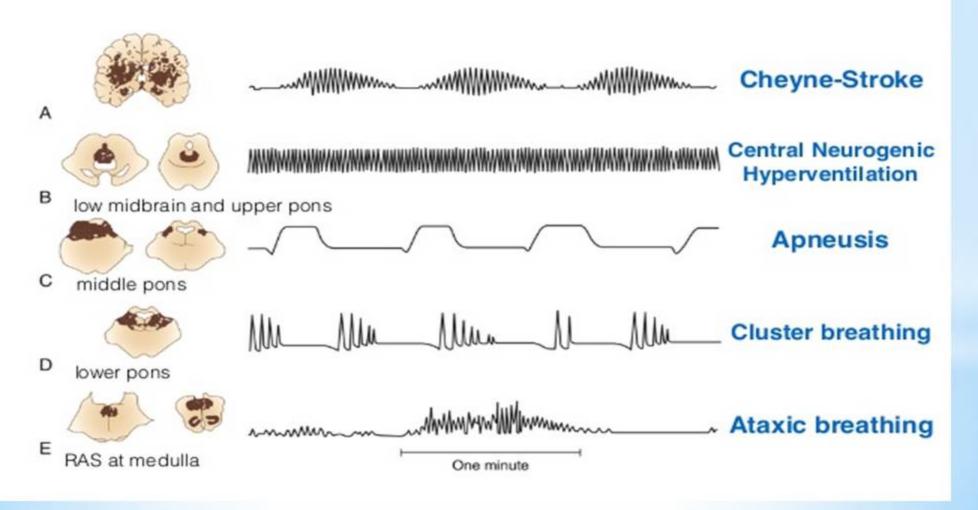
Fever

- * Infection
- * Inflammation
- * Neoplasms (rare)
- * Anticholinergics
- * Subarahnoid hemorrage (SAH)
- * Hypothalamic lesion
- * Heatstroke
- * Thyroid storm
- * Malignant hyperthermia

Hypothermia

- * Exposure
- * Sepsis
- * Shock
- * Myxedema coma
- * Wernicke's encephalopathy
- * Drug intoxication (especially barbiturates)
- * Hypothalamic lesion
- * Hypoglycemia

*Signs of localizing value!


Respiratory pattern

Pupillary responses

Limb movements

Eye movements

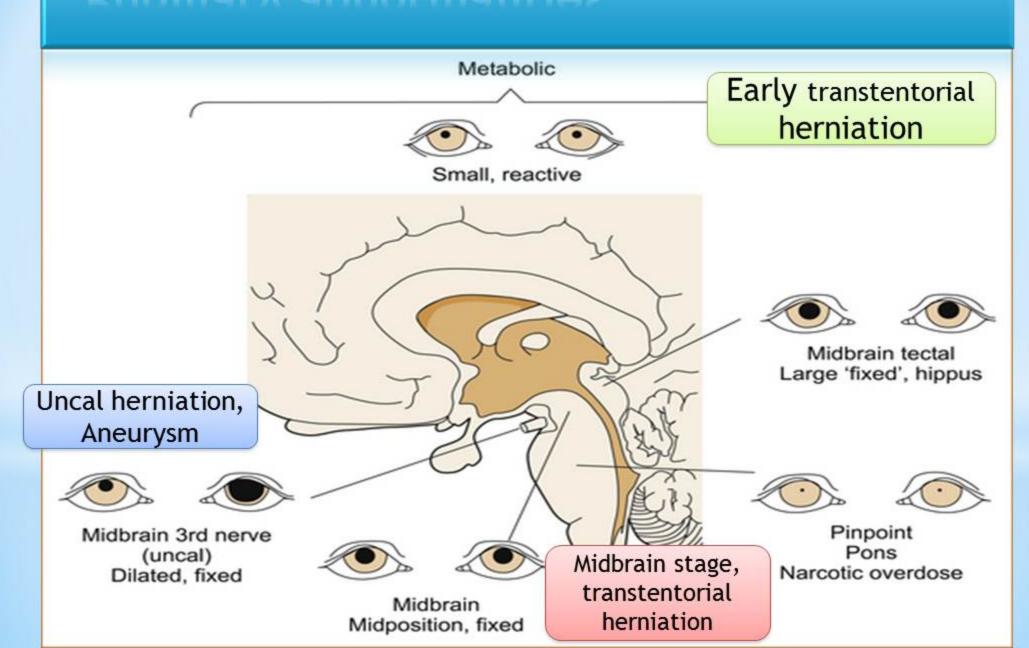
Abnormal Respiratory Pattern

*Systemic examination

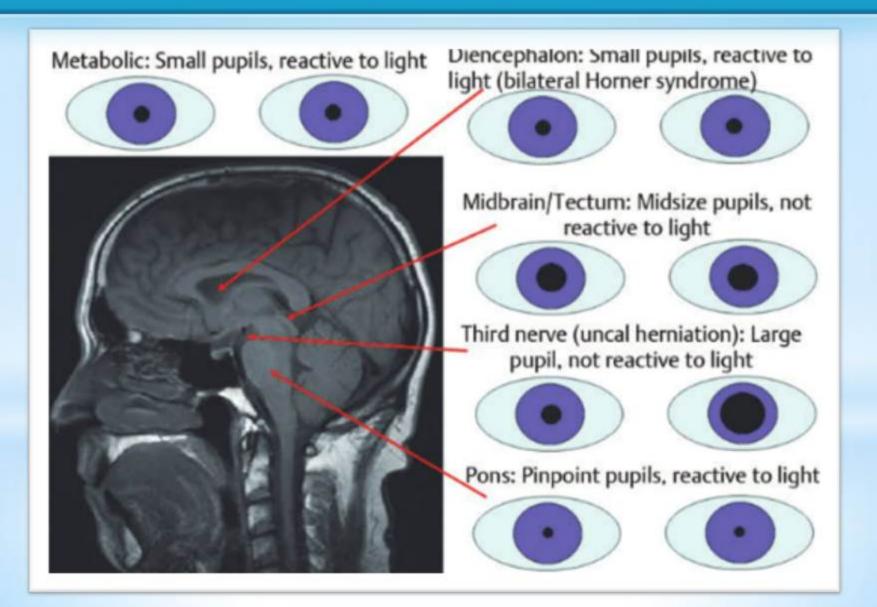
Cardiovascular system	•Arrhythmia-Cerebral embolism •Murmur-SBE, embolism
Respiratory system	Pulmonary edema- 1. Neurogenic pulmonary edema 2. CHF 3. Anoxic encephalopathy
Gastrointestinal	Fecal incont- Seizures Stool blood- HE, GI hge
GUT	Hematuria Incontinence
Extremities	Focal seizures

Resting position

Spontaneous movts


Reflex movts

Lateral gaze	Acute hemispherical, Pontine lesion
Downward gaze	Thalamic lesion, Lesions of pretectum, Hepatic coma, SAH, Hypoxia
Upward gaze	Sleep, Seizure, Syncope, Vermian H'age, Brain stem ischaemia, Brain stem encephalitis, Hypoxic encephalopathy
Horizontal dysconjugate	3,6 CN palsy, INO
Vertical dysconjugate	3 or 4 CN palsy, Skew deviation-posterior fossa lesion


Spontaneous movements

Horizontal roving eye movement	
Nystagmus	Seizures
Ocular bobbing	Pontine lesions, Anoxia
Ocular dipping	Diffuse cerebral damage
Ping Pong gaze	B/I cerebral, post fossa rarely
Nystagmoid jerk of single eye	Middle or lower pons
Vertical myoclonus	Pons

*Pupillary abnormalities

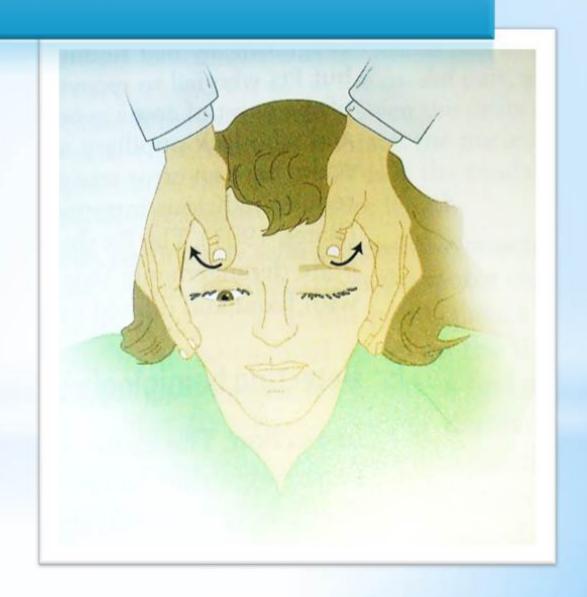
*Pupillary abnormalities

*Lateral gaze abnormalities

Hemispheric lesions	Look toward the lesion (away from paretic side) In seizures, briefly away from the lesion Preserved OC, OV reflexes
Brainstem (Lower Pons)	Look toward the paretic side Absent OC,OV reflex
Toxic/ Metabolic	Impair vertical & horizontal movts

*Rest of cranials

-Fundoscopy


-V: blink

-VII: cheeks and

Eyes: Eyelid

release test

-Gag

*Oculocephalic reflex(Doll's eye)

Normal (reflex present)

Head rotated to the right

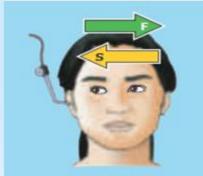
Eyes move to the left

Abnormal (reflex absent)

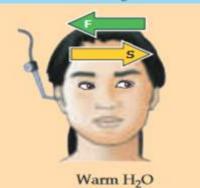
Head rotated to the right Eyes follow

*Oculo-vestibular reflex

Ocular reflexes in conscious patients

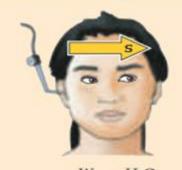

(1) Normal

(2) Brainstem intact

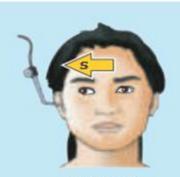

Ocular reflexes in unconscious patients


(3) MLF lesion (bilateral)

(4) Low brainstem lesion



Cold H₂O

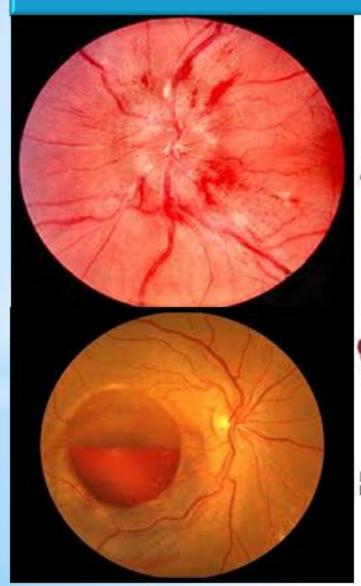


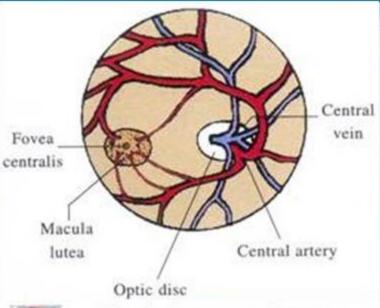
Cold H2O

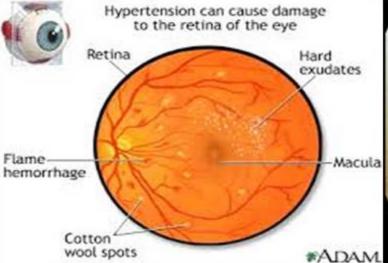
Warm H₂O

Cold H2O

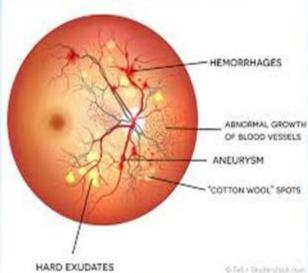
Warm H₂O




Cold H2O



Warm H₂O


* Fundus exam

DIABETIC RETINOPATHY

* Approach to the Comatose Patient nitial Treatment

- ***A**irway
- *Breathing
- *Circulation
- *ABC identify and address life threatening inadequacies
- *Treat rapidly progressive metabolic disorders -- hypoglycemia
- *Evaluate for intracranial hypertension and imminent herniation and treat

* Approach to the Comatose Patient Priorities

- *ABC's are paramount!
- *Must prioritize
- *Must ensure oxygen and substrate reach CNS and vital organs
- *Must address immediately life threatening conditions before addressing CNS

* Management of the Comatose Patient Airway

- *Evaluate is airway patent. Can patient move air without obstruction. Is there trauma or foreign body obstructing airway
- *Try chin lift to help open airway -- protect cervical spine
- *Place airway if indicated nasal or oral airway, intubation, or surgical airway

* Management of the Comatose Patient Airway

- *Intubate (protecting neck) "anyone who will let you"
 - *Any of the following are adequate criteria
 - *GCS < 9
 - *Airway not secure or open
 - *Respiration not adequate
 - *Any significant respiratory failure
 - *Uncertainty regarding direction or rate of mental status changes, particularly if constant observation not available (during CT scans, etc..)

* Management of the Comatose Patient Breathing

- *Evaluate is patient moving adequate air, is respiratory rate appropriate, is gas exchange adequate, are breath sounds adequate and symmetrical
- *Must assure oxygenation and ventilation
- *If intubated don't forget to ventilate
- *Identify and immediately treat problems pneumothorax, airway obstruction, etc..

* Management of the Comatose Patient Circulation

- *Is patient in shock?
 - *Check pulses, heart rate, blood pressure, perfusion
 - *Remember hypotension is *late* sign of shock
- *Start treatment for shock
 - *Do not restrict fluids in comatose patient with inadequate intravascular volume.
 - *Cardiac output and cerebral perfusion are much more important than fluid restriction

* Management of the Comatose Patient Circulation

- *Use isotonic solutions and blood, as indicated.
- *Do not use hypotonic solutions to treat shock, particularly patients with coma or possible cerebral edema
- *Identify life threatening hemorrhage and control it.

* Management of the Comatose Patient Glasgow Coma Scale

*Glasgow coma scale

- *Provides easily reproducible and somewhat predictive basic neurologic exam
- *This allows rapid assessment and record of baseline neurologic status
- *Allows physician to track neurologic changes over time and multiple examiners

*Glasgow Coma Scale

- *Three components. Score derived by adding the score for each component.
 - *Eye opening (4 points)
 - *Verbal response (5points)
 - *Best motor response (6 points)

*Glasgow Coma Scale

- *Eye opening
 - *4 spontaneous
 - *3 to speech
 - *2 to pain
 - *1 none
- *Verbal Response
 - *5 oriented
 - *4 confused conversation
 - *3 inappropriate words
 - *2 incomprehensible sounds
 - *1 none

- *Best Motor Response
 - *6 obeys
 - *5 localizes
 - *4 withdraws
 - *3 abnormal flexion
 - *2 abnormal extension
 - *1 none

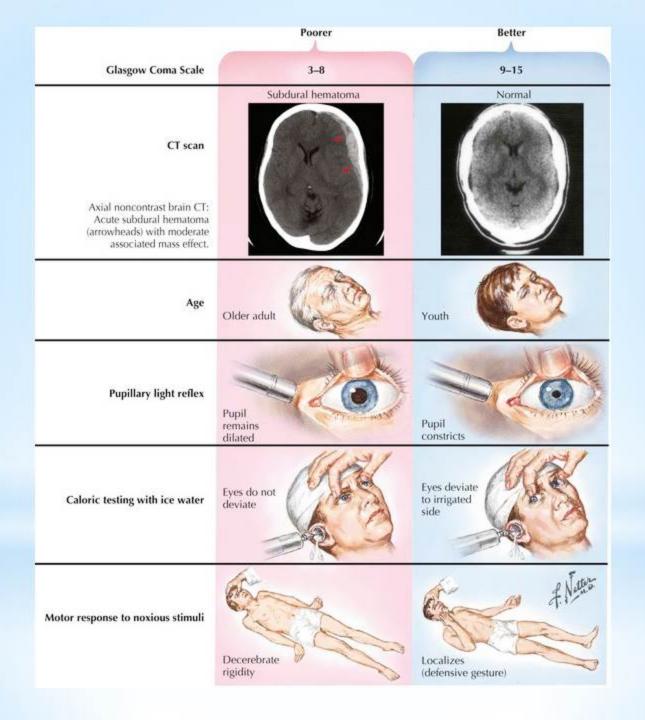
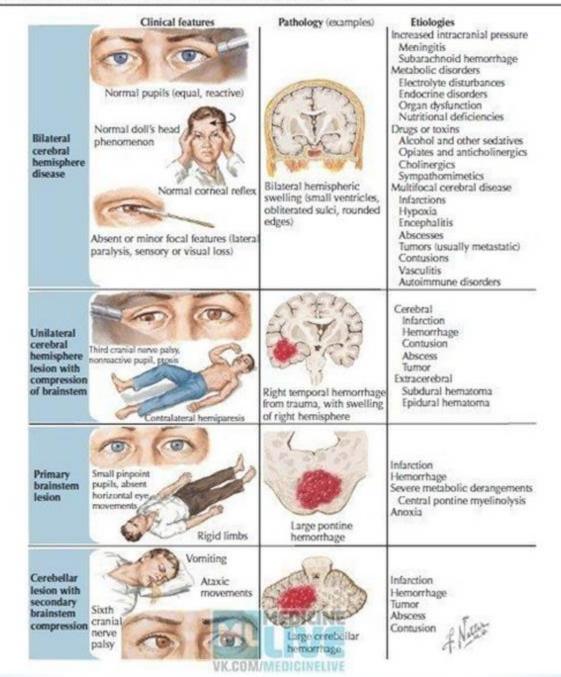



Figure 121-1 Differential Diagnosis of Altered Consciousness.

* Management of the Comatose Patient Secondary Survey

- *Do a quick general exam of the entire body to identify acute life threatening conditions
- *In general, major thoracic or abdominal trauma takes precedence after ABC's
- *Only very rarely is acute neurosurgical intervention appropriate before other acute life threatening injuries are stabilized (except protection of spine (mostly cervical part) by immobilization)

* Management of the Comatose Patient Secondary Survey

- *General motor exam
 - *look for focal deficits, posturing (decerebrate or decorticate)
- *Reflexes, tone
- *Cranial nerve and brainstem function
 - *Pupillary response diencephalon, midbrain, brainstem, CN's II and III
 - *Corneal Reflex CN's V, VII, brainstem
 - *Oculocephalic Reflex not if neck injury possible. Tests CN's III, IV, VI, VIII, and brainstem.
 - *Oculovestibular (calorics) can be done if neck questionable.

* Neurological Exam Oculoyestibular Testing

- *Check for tympanic perforation
- *Instill 120 cc cold water over 2 minutes
- *Conscious patient COWS
- *Coma with intact pathways tonic eye deviation to side of cold

* Management and evaluation of the Comatose Patient

- *Does the patient have a rapidly progressive intracranial lesion?
- *Assume yes, if:
 - *1. Any evidence of brainstem abnormality
 - *2. Any evidence of rostral caudal progression
 - *3. Any focal deficits
 - *4. Progression of motor exam from withdrawal to posturing

* If the patient have a rapidly progressive intracranial lesion:

- *If any factor of such is present, assume increased intracranial pressure is present and herniation and irreversible damage imminent
 - *Intubate
 - *Hyperventilate
 - *Mannitol
 - *CT scan, neurosurgical consultation

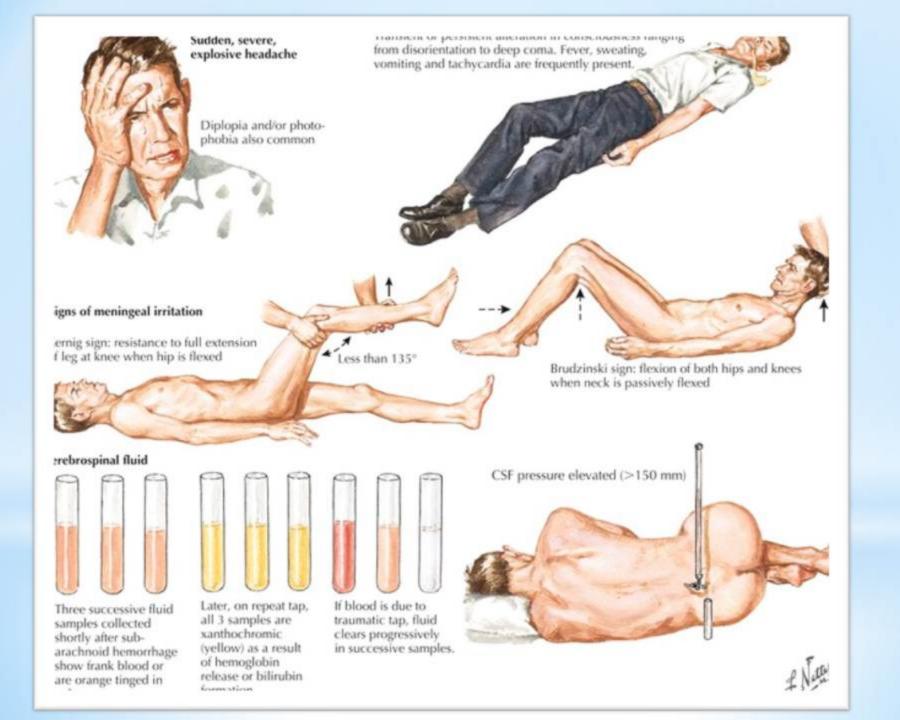
* If the patient have a rapidly progressive intracranial lesion:

- *If none of the findings are present, surgical lesion less likely than metabolic cause
- *Mass lesion still possible, though CT scan
- *Urgency of intubation less but should consider
 - *Will patient deteriorate, particularly while out of constant observation (CT scanner)?
 - *Can patient protect airway?

* Management and evaluation of the Comatose Patient Additional Points

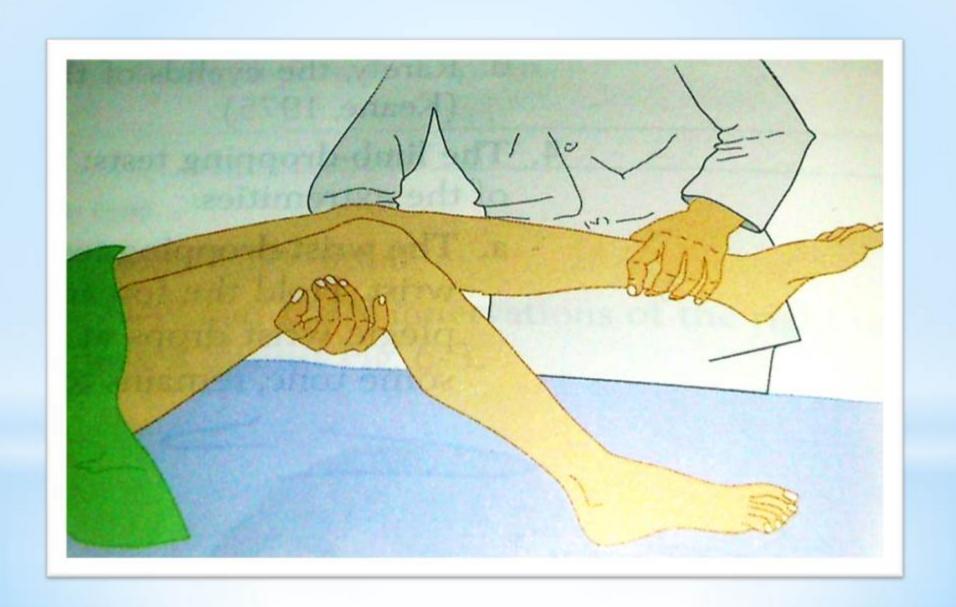
- *If scans normal, probably metabolic
- *Emergent causes of metabolic coma (even after ABC's)
 - *Hypoglycemia give glucose
 - *Infection LP, consider antibiotics, acyclovir. If diagnostic studies delayed, treat first
 - *Certain toxins antidepressants, salicylates, theophylline, alcohol (methanol and ethylene glycol)
 - *Subclinical status epilepticus

*Meningeal signs

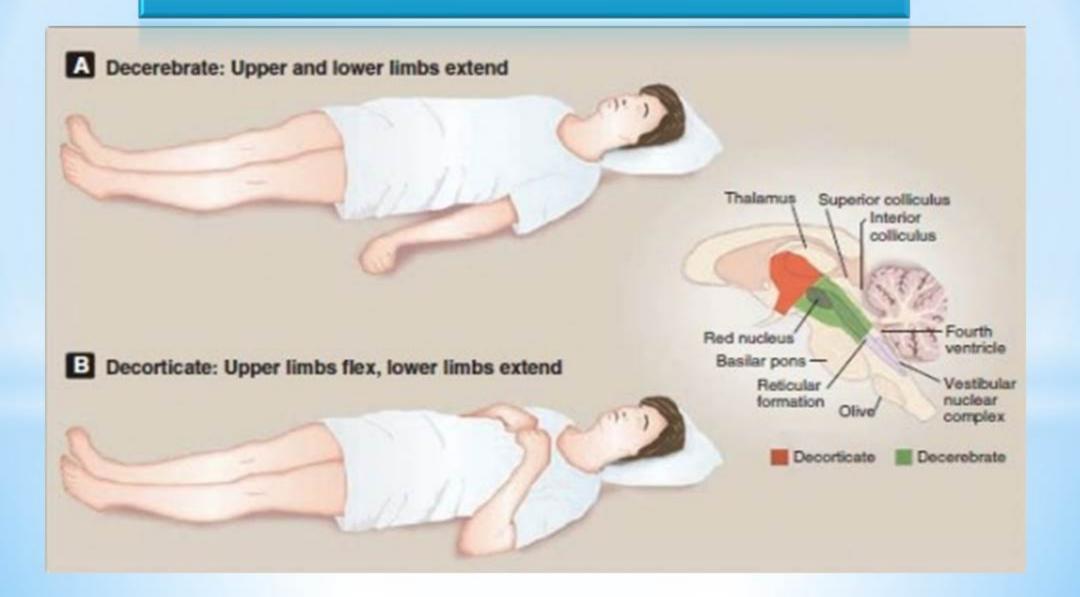

Meningeal Irritation Signs

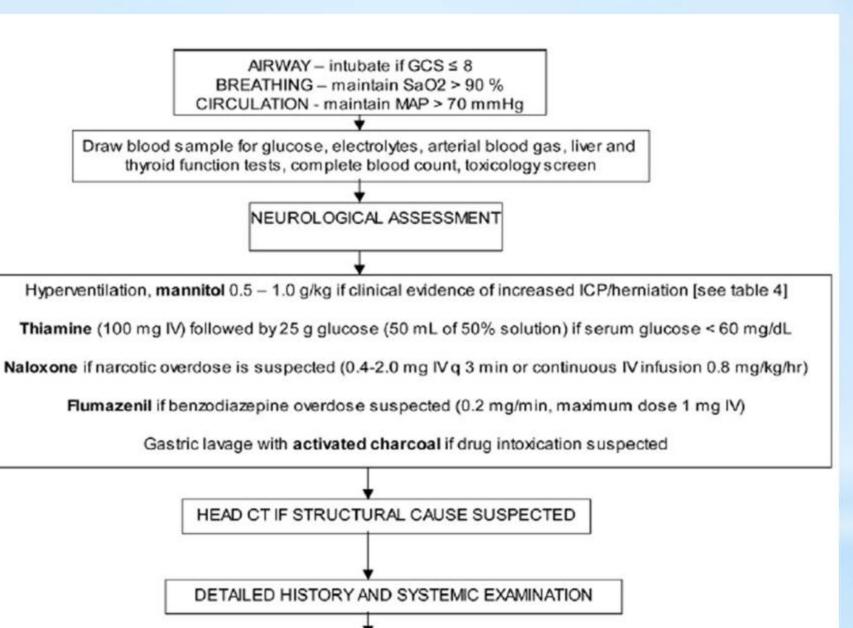
- -Neck stiffness
- -Kernig's sign
- -Brudzniski'

- 1 Knee is flexed to 90 degrees
- 2 Hip is flexed to 90 degrees
- 3 Extension of the knee is painful or limited in extension


* Motor examination

- *Difficult to interpret
- *Light coma -> lies quietly or thrashes about in bed
- *Decorticate rigidity contralateral to hemispheric lesion
- *Decerebrate rigidity
- *Most common responses are reflexive in reaction to noxious stimuli
- *Localizing responses, such as moving the examiner's hand away from the body, are *not consistent* with coma
- *Flexion and extension responses to painful stimuli are consistent with coma


* Motor examination


- *Motor system
- *Signs of hemiplegia
- -wrist-dropping test
- Arm-dropping test
- Legs-dropping test
- -Driven postures: Decorticate, Decerebrate.

* Posturing

CONSIDER EEG, LUMBAR PUNCTURE, MRI

*Reversible causes of coma

Structural

- Brain mass
- Anoxic-hypoxic brain disease with RoSC after cardiac arrest
- Raised intracranial pressure
- SDH, EDH
- ICH
- Acute ischaemic stroke
- Hydrocephalus
- Cerebral oedema resulting from stroke
- CVT
- Sepsis , CNS infections
- Non-convulsive or minimally convulsive status epilepticus

Diffuse

- Hypoglycaemia
- Hyperglycaemia, diabetic or alcoholic ketoacidosis
- Hyponatraemia
- Hypercalcaemia
- Hyperammonaemia
- Renal failure
- Hepatic encephalopathy
- Thyroid storm
- Myxoedema coma
- Adrenal crisis
- Pituitary apoplexy
- Wernicke's encephalopathy

*Prognosis in Nontraumatic Coma

*Using the Levy

algorithm, a physician

can predict the

probability of a

meaningful recovery 3

days after cardiac arrest

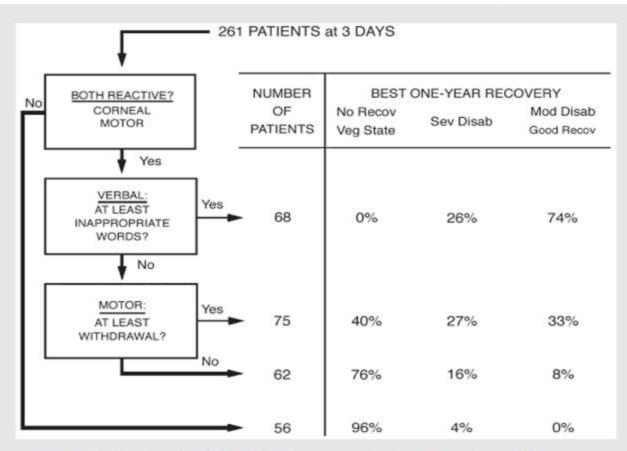


FIGURE 2-1

Decision tree of bedside tests to predict outcome in patients with nontraumatic coma.

Disab = disability; Mod = moderate; Recov = recovery; Sev = severe; Veg = vegetative.

Reprinted with permission from Levy DE, Bates D, Caronna JJ, et al. Prognosis in nontraumatic coma. Ann Intern Med 1981;94(3):293–301.

*Prognostic indicators

Phy Ex parameter

- Lack of pupillary responses in the first 3 days, lack of corneal response in the first 3 days,
- Evidence of widespread myoclonic epilepsy in the first 24 hours
- Lack of extensor motor responses.

Lab parameter

- A blood test for neuronspecific enolase (NSE)
- Median nerve somatosensory evoked potentials

THANK YOU